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Summary

Design optimization of large structural systems can be

attempted through a substructure strategy when convergence

difficulties are encountered. When this strategy is used, the

large structure is divided into several smaller substructures and

a subproblem is defined for each substructure. The solution of

the large optimization problem can be obtained iteratively

through repeated solutions of the modest subproblems. Sub-

structure strategies, in sequential as well as in parallel compu-

tational modes on a Cray YMP multiprocessor computer, have
been incorporated in the optimization test bed CometBoards.

CometBoards is an acronym for Comparative Evaluation Test

Bed of Optimization and Analysis Routines for Design of

Structures. Three issues, intensive computation, convergence

of the iterative process, and analytically superior optimum,

were addressed in the implementation of substructure optimi-

zation into CometBoards. Coupling between subproblems as
well as local and global constraint grouping are essential for

convergence of the iterative process. The substructure strategy

can produce an analytically superior optimum different from

what can be obtained by regular optimization. For the problems

solved, substructure optimization in a parallel computational

mode made effective use of all assigned processors.

Introduction

Structural optimization based on nonlinear mathematical

programming techniques can perform quite satisfactorily for

modest design problems with few independent variables and a
small number of active behavior constraints. This fact has been

numerically verified through the test bed CometBoards (ref. 1).

CometBoards, which is an acronym for Comparative Evalua-

tion Test Bed of Optimization and Analysis Routines for

Design of Structures, is being developed in the Structures
Division of NASA Lewis Research Center. The solutions of

about 35 examples, which constitute the test bed, showed that
structural optimization methods can only perform satisfactorily

for problems with I0 to 20 design variables and an equal num-

ber of implicit behavior constraints. Therefore, an alternative

strategy is being developed to solve large problems with many

design variables and a multitude of behavior constraints. In this

strategy, called substructure optimization, a large nonlinear

optimization problem is solved iteratively by dividing it into a

number of smaller subproblems. A subproblem is associated

with a substructure that is a small part of the total structure; that

is, the original large structure is divided into several substruc-

tures. Each subproblem with few design variables and a small

number of behavior constraints can be solved with ease using

the traditional nonlinear programming methods. Through

repeated application of substructure optimization, a large struc-
tural problem can be solved successfully, circumventing clas-

sical impediments in nonlinear programming algorithms.

Substructure optimization does not come without a price.
Three issues have been identified and resolved:

(1) Intensive computation: Substructure optimization,

which is an iterative procedure, can become computationally

more intensive than the single-step regular optimization pro-
cess. To alleviate this shortcoming, parallel computational

strategy is adopted; that is, optimization of substructures is

assigned to several processors of a multiprocessor Cray YMP

computer. Some computational burden, however, may have to

be absorbed through the ever-increasing power of computers.
(2) Convergence of the iterative process: In substructure

optimization, convergence of subproblems need not guarantee
the solution of the original large problem. Two strategies have

resolved this limitation: (a) overlapping substructures to pro-

vide adequate coupling between subproblems, and (b) group-

ing behavior limitations into local and global constraints.
(3) Analytically superior optimum: For some structural

problems, the iterative substructure optimization process can

produce an analytically superior optimum different from what

can be obtained when the same problem is solved in a single

step without invoking subproblem strategy. This anomaly

appears to favor substructure optimization but cannot now be

adequately explained.

Substructure optimization for a Cray YMP parallel comput-
er has been incorporated in the design code CometBoards. Two

attractive features of CometBoards, design variable formulation

and behavior constraint formulation, become automatically

available for substructure optimization. CometBoards can be
used either for a single-step optimization or for iterative sub-

structure optimization.

The concept of substructure optimization in a rather limited

fashion, with intuitive assumptions and emphasis on solving a

particular problem, can be found in representative literature

(refs. 2 to 5). Reference 2 presents the design of a wing box
(which is idealized using bar and membrane elements) through

decomposition. The sensitivity calculations for a multilevel



decompositionaregiveninreference4,andsomeofthesecon-
ceptsarebeingincorporatedinCometBoards.Thesubstructure
optimizationdevelopedhereindiffersfromthatavailableinthe
literatureinaspectssuchasgeneralformulationwithacoupling
strategy(i.e.,thecodeisnotwrittenforaspecificapplication),
substructureoptimizationinbotha sequentialandaparallel
computationalenvironment,multipleoptimizersandanalyzers,
anddesignvariableandconstraintformulationstoenhancealgo-
rithmrobustnessandreducecomputationtime.

Thepurposeof thispaperis todescribethethreebasic
issues(i.e.,computation,convergence,andsuperioroptimum)
encounteredwhensubstructureoptimizationwasincorporated
inCometBoards.TheseissueshavebeenresolvedandComet-
Boardshasbeenvalidatedbysolvingtheseveralnumerical
examplespresentedherein.Withthecompletionofthecode
validation,thesolutionofaverylargeproblem,whichcannot
besolvedbyasingle-stepoptimizationwillbeattemptedinthe
futurebysubstructureoptimization.Thispaper,however,does
notincludesuchalargeproblem.

Thepapercomprisessixsections:abasicintroductionto
thedesigncodeCometBoards;formulationsof substructure
optimizationinsequentialandparallelcomputationalmodes;
numericalexamples;discussionofthethreeissues;andconclu-
sions.Theappendixcontainsthenomenclatureusedin this
paper.
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X

area of ith member

diameter, in.

Young's modulus, psi

frequency, Hz

frequency limit, Hz

objective function

jth behavior constraint

length, in.

number of design variables

number of inequality constraints

line pressure load, lb/in.

radius, in.

thickness, in.

displacement along x-axis

displacement along y-axis

independent design variables

L
x k lower bound on design variable xk

x U upper bound on design variable xk

displacement, in.

5o displacement limit, in.

0z rotation about z-axis

v Poisson's ratio

p density, lb/in. 3

stress, psi

Go stress limit, psi

Design Code Cometboards

The CometBoards code has been developed for the design

optimization of structural systems that can be cast as the fol-

lowing nonlinear mathematical programming problem:
Find design variables X which

Minimize f (X) (I)

subject to

gj (X) <_ 0 j = 1 .... nic

x k <Xk<X k = 1 .... ndv

(2)

wheref(X) is the objective function, gj(X) are the behavior con-
straints, nic is the number of inequality constraints, x L and x U

are the lower and upper bounds, respectively, on the independent

design variable xt, and ndv is the number of design variables.

CometBoards formulates structural design as a nonlinear

optimization problem in terms of equations (1) and (2) and then

solves the optimization problem. The organization of the code,

along with its development phases, is presented in figure 1.

This paper concerns itself with phase 3 (fig. 1), that is, sub-

structure optimization and parallel processing on the Cray
YMP.

The central processor of the code (shown as Control via

command level interface in fig. 1) links different modules, and

formulates an optimization problem from the information

specified in the data files.The code then solves the optimization

problem by employing a user-specified analyzer and a user-
specified optimizer. Substructure optimization can be used for

the design optimization of large structural systems and can be

carried out either in a sequential or a parallel computational

mode on the Cray YMP computer.
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Ootimiza*iooo *io 
o IMSL (sqp) _ o Multidiscipline o :System

o SLP _ o Others / Development of CometBoards
o SQP _ o LE_HOST /

o SUMT _ I / Phase Description

o MFD _ l / 1 Comparative evaluation of optimizers

o RG _ _ f and analyzers
o NAG (sqp) _ 2 Space Station and EPM Project

Status

Completed

Completed
_N Control via command/

( Spbr_iz_tiure _-_ level interface /

b/J__.._.._/ olris/Unix (C-shell script)

• " °V__oCrayM/CMS(RyMp E_exec)
°Stored in output file
°Displayed at terminal

• Component synthesis

• Design variable formulation
• Constraint formulation

• Substructure optimization

• Parallel processing in Cray YMP

Multidiscipline optimization

• Strategy

• Objective function formulation

Completed

Progress

Figure 1 .---Organization of CometBoards code.

The Optimizers module of CometBoards (fig. i) includes

several design algorithms: fully utilized design (FUD, ref. 6),

optimality criteria techniques (OC, ref. 7), the method of feasi-
ble directions (FD, ref. 8), the sequence of linear programming

(SLP, ref. 9), the quadratic programming method in the IMSL

(ref. 10), the sequence of quadratic programming (SQP,

ref. I 1), and the sequence of unconstrained minimization tech-

nique (SUMT, ref. 12), etc. These algorithms are well known
in the literature and are not elaborated upon herein. The Ana-

lyzers module of CometBoards includes (I) LE_HOST, a finite

element analyzer (ref. 13); (2) ANALYZE, a stiffness-based
finite element code developed at Wright Patterson Air Force

Base (ref. 14); (3) the integrated force method (IFM, ref. 15);

(4) a simplified force method; and (5) a closed-form IFM solu-

tion used to check analyzers (1) to (4).
The Data Files module of CometBoards reads finite ele-

ment analysis input in the Analysis data file; design variables,

their groupings, constraint specifications, limitation linkages,
and such in the Design data file; data specific to optimization

algorithms, such as convergence tolerance, stop criteria, and it-

eration limits, in the Optimizer data file; and information for

multidiscipline optimization in the System data file.
Two features of CometBoards, design variable formula-

tion and behavior constraints grouping, reduce the complexity

of the optimization problem and assist in convergence. These
features are described in the following two sections.

example, a two-node, nonprismatic beam element (BE_98) and

a four-node, variable-thickness, quadrilateral shell element

(SH_75) available in CometBoards. The beam element can
have a maximum of four design variables consisting of a depth

and a width at each of its two nodes (d l, b 1, d2, and b2). The

quadrilateral shell element can have a maximum of four design
variables consisting of the thickness at each of its four nodes

(t I, t2, t3, and t4). A finite element model with many beam and
shell elements gives rise to a large number of design variables

that, for practical applications, need not be considered as inde-

pendent variables. The large number of nodal design variables

can be reduced by linking and by invoking the concept of

active and passive variables. The linking strategy is initiated by
dividing the given structural model into several segments. All

the nodes within a segment can be linked to an independent

design variable through assigned weighted parameters. The
number of independent design variables can be further reduced

by declaring a variable to be either active or passive. The val-

ues of the passive variables are kept at their initial levels but the

active variables are updated during optimization. The active/

passive classification not only reduces the number of design
variables but also facilitates component synthesis; that is, an

optimum design of a small component of a large structure can
be obtained.

Behavior Constraints Grouping

Design Variable Formulation

A reduced number of independent design variables are

generated through design variable formulation. Consider, for

The number of behavior constraints proliferates when the

finite element technique is used as the analysis tool in

optimization because several thousands of degrees of freedom
may be required to achieve an accurate analysis solution. The



constraintpopulationcanbereducedwithoutanydetrimental
effectbyfollowingagroupingschemeinwhichthestructure is

divided into several design patches, each containing a group of

finite element nodes. For all the nodes within a patch, strength
constraints are calculated on the basis of one of the failure cri-

teria available in CometBoards (e.g., Von Mises stress, strain

energy, distortion energy). These constraints are graded from
the most active (possibly infeasible) to the least active, and a
few of the critical constraints are selected each time the struc-

ture is reanalyzed for optimization. Constraints for elemental

buckling and crippling can be similarly grouped. Behavior

constraints on structural problems can be functionally depen-

dent; this dependence, in turn, can produce a singularity condi-

tion during the generation of search directions and adversely

affect convergence of the optimization process (ref. 16). The
CometBoards constraint formulation has been successful in

circumventing obstacles related to singularity and constraint
redundancy.

The code user, however, has the option of skipping design
variable formulation and behavior constraints grouping,

thereby treating all variables and constraints as independent
parameters.

CometBoards Numerical Test Bed

CometBoards (phase 1, see fig. 1) was validated through
the solution of more than 35 problems which constitute the test

bed. Examples were selected from structural optimization liter-

ature and from the design optimization of components of the
space station. Some of the examples solved are summarized in

references 1, 17 and 18. Problem parameters were selected to

ensure that at the optimum several behavior constraints be

active but bounds on design variables be seldom active. To en-

sure uniformity and avoid bias, we specified a consistent set of

initial designs, upper and lower bounds, convergence and stop

criteria, iteration limits, etc., for each problem. All the prob-

lems were solved on a Cray YMP computer and also on an SGI

workstation using different optimization algorithms. Some

results (scaled optimum weight was unity) are presented in fig-

ures 2 and 3. An optimum weight of less than unity represented

Relative weight scale (1 = optimum)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

SUMT

SLP

FD

i IMSL

SQP

OC

FUD

Problem 4

Figure 2.--Performance of regular optimization methods for structural problems with 10 to 20 design
variables.
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Figure 3.--Performance of regular optimization methods for structural problem with more than 50 design variables.

an infeasible solution; an optimum weight greater than unity

represented over-design. Most optimization algorithms per-
formed well for modest problems with 10 to 20 design vari-

ables (fig. 2). When the number of design variables exceeded

50, most nonlinear algorithms experienced difficulty (fig. 3);

SUMT and SQP in IMSL converged, but only with several ini-

tializations and restarts. The purpose of including these exam-

ples is to illustrate that optimization algorithms perform well
for modest problems. The motivation, therefore, is to develop

substructure optimization so that the solution of a large prob-

lem can be obtained through repeated solutions of modest

problems.

Formulation of Substructure

Optimization

In the substructure optimization technique, the original

structure is divided into several substructures (fig. 4). Each sub-

structure can have a few independent design variables and a

small number of behavior constraints. Adequate coupling (over-

lap) between substructures (fig. 4) must be provided. Coupling
between substructures is essential; otherwise, difficulty in

solving the original structure can be very easily encountered.

Substructure optimization can be carried out in either a sequen-
tial or a parallel mode on a multiprocessor computer. Both algo-
rithms are described next.

Sequential Computation

The substructure solution strategy for sequential computa-

tion is executed through two major do-loop statements as

depicted in figure 5(a). The basic steps are

(1) Initialize all design variables for the entire structure.

(2) Define each substructure and ensure adequate overlap
between substructures. Let the number of substructures be

NSUBSTR.

(3) Define design variables for each substructure. Design

variable formulation can be invoked at this stage. A substruc-

ture must have at least two independent design variables. At
least one variable must be common to two substructures to pro-

vide coupling between subproblems.



Substructure (N)

Substructure (1)

Figure 4._Substructure optimization technique.

IInitialize x I
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I Define subproblemsI
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Figure 5._Sequential and parallel algorithms. (a) Sequential. (b) Parallel.

(4) Formulate the substructure optimization problem,

henceforth called a subproblem. The constraint set for the sub-

problem should include all stress and buckling constraints for

the substructure in question. Frequency and displacements,

global constraints, should be included in all the subproblems.
Constraint formulation can be invoked to reduce the number

of behavior constraints.

(5) Define substructure weight as an active objective

function for a minimum-weight design.

(6) Solve the subproblem defined in steps (3) to (5) by

using a user-specified optimizer and a user-specified

analyzer (fig. 1). It would be more efficient to carry out

reanalysis by using substructure analysis or super-element

concepts, but these features have yet to be implemented in
CometBoards.

(7) Update the design variables for the entire structure as

soon as the subproblem is solved.

(8) Execute the inner loop, consisting of steps (3) to (7),
for all subproblems. Convergence or stop criteria for the inner

loop need not be very stringent.

(9) Repeat the above steps; that is, execute the outer loop

until convergence occurs for the entire structure. A tighter con-

vergence or stop criterion can be specified for the outer loop.

Let the number of times that the outer loop is executed be



NOUT_SQL. The number of subproblems solved (NUMSPS)

to complete the original large problem is equal to NSUBSTR

NOUT_SQL.

Parallel Computation

The substructure solution strategy for parallel computa-

tion (on the Cray YMP), as shown in figure 5(b), is quite simi-

lar to that for sequential computation. This strategy also has

two major loops (fig. 5(b)). Steps (1) to (5), which essentially

define subproblems, are identical to those for sequential com-

putation. The modifications to other steps are

(6) Determine the available number of processors. Dis-

tribute subproblems to the processors. Eight processors are

available on the Cray YMP, and at least one subproblem can be

assigned to each processor. Balancing computational loads

between different processors requires that the solution com-

plexity of the various subproblems be equal. Each subproblem

has to be optimized independently without any exchange of

information between subproblems; this is the major difference

between the parallel and sequential computation. In sequential

computation, once a substructure solution is available, the

design variables for the entire structure are updated, aiding the

solution of subsequent subproblems. In parallel computation,

design variables are updated only after all subproblems have

been solved. This step concludes the inner loop.

(7) Update design variables for the entire structure by

using results from all NSUBSTR subproblems.

(8) Repeat the above steps; that is, execute the outside

outer loop until convergence occurs for the entire structure.

The number of times that NOUT_PRL, the outside outer

loop is executed can exceed the number of times that substruc-

ture optimization is carried out in sequence (NOU_PRL _>

NOUT_SQL). The parallel mode, in other words, can be more

computationally intensive than the sequential mode.

Numerical Examples

Substructure optimization has been recently incorporated

into the code CometBoards. The examples given here were used

to validate the code. The issues in substructure optimization

(convergence, computation, and superior optimum) are dis-

cussed using the same examples. The first problem, design of the

space shuttle cargo bay support system, is elaborated in some

detail. For other examples only a summary of results is provided.

1: Design of Space Shuttle Cargo Bay Support System

A space shuttle cargo bay support system, which would be

used to launch a space station segment called a long spacer

structure and integrated equipment assembly (lEA), is shown

in figure 6. The support system is made of aluminum with a

Young's modulus of 9.9×106 psi, a Poisson's ratio of 0.303, a

weight density of 0.098 lb/in. 3, and an allowable stress of

30 000 psi. Critical design loads were generated from a variety

ron trunnion

__1 ,[_ _ _ (support system)

'\\ _ _ Keel trunnion

_ Long spacer structure

jl_[_:_ _11_ _ _ Outboard integrated
T I _"_/_ equipment assembly

_- Longeron trunnion

Z

,@x
Figure 6._Configuration of long spacer structure and integrated equipment assembly.



of shuttle accelerations and maneuvers (ref. 19). Loads for the

support system were obtained by analyzing a coupled model

with 9658 finite elements and 7439 nodes (ref. 20). The sup-

port system was designed for minimum weight under stress
and displacement constraints (ref. 21).

The support of the coupled structural assemblage was

optimized by using a component synthesis concept available in

CometBoards (i.e., by invoking the active/passive concept in

design variable formulation). The structural model of the sup-

port, which was divided into 4 segments (shown as different

colors in fig. 7), has 132 shell finite elements. The first segment

(FGHIJK in fig. 7) is a closed box composed of 5 plates; it was

discretized into 72 shell elements. The second segment
(FHEC) has 36 elements; the third (GHE) and fourth (GHD)

segments have 12 elements each. The 5 connecting frame

members were treated as passive variables during design, but
for analysis they were discretized using 20 beam elements. For

the purpose of optimization, the shell thicknesses were consid-

ered the design variables. Through design variable formula-

tion, the nodal thicknesses of all elements within a segment

were grouped to obtain a single independent design variable.

The support system for parallel computation was divided into

three substructures: Substructure 1 consists of segments 1 and

2; substructures 2 and 3 consist of segments 2 and 3, and 3 and

4, respectively. For sequential computation a fourth substruc-
ture consisting of segments 4 and 1 was considered to close the

inner loop to accelerate the convergence process. For parallel

computation, the design variables for the entire structure were

updated only after all subproblems were solved; therefore, it

was not necessary to include substructure 4.

°

Figure 7.inFinite element model of cargo bay support system. All
dimensions are in inches.



Optimization results for the support system are given in

table I. Table I(a) gives the weight of the structure after the com-

pletion of each outer loop. Table I(b) provides the optimum

design and the number of active constraints. The time estimate

on a Cray YMP computer is given in table I(c). For this problem,

acceptable convergence was achieved after the execution of the

first outer loop. Optimum results obtained by parallel and

sequential substructuring compared very well with that obtained

when the entire structure was optimized as a single unit

2: Design of Short Spacer Structure for Space Station

The design optimization of a short spacer structure for the

space station (fig. 8) was the second example. The finite ele-

ment model for the structure has 262 beam elements. The

minimum-weight design of the structure was obtained for a

pseudostatic load condition generated from shuttle accelera-

tions of 6.75 g along the x-axis, 2.25 g along the y-axis, and

6.75 g along the z-axis (where g is the acceleration due to

Data

Tubular cross sections, in.

Diameter, DO ................................... 3.0

Thickness, to ................................... 0.2

Young's modulus, E, psi .......... 9.9x106

Weight density, p, Ib/in. 3 ............... 098

Poisson's ratio, v. ........................... 303

Stress limit ¢o' psi ................... 30x103

Displacement limit, 8o, in ............... 1.0

Frequency limit, fo' Hz ................... 6.0

Longeron

trunnion --\
\

\

77.9

Keel /
trunnion =/ 101.5

135.5

\

_-- Longeron
trunnion

_ Location lumped mass (weight pounds)of in

Figure 8.--Configuration of short spacer structure. All dimensions are in inches.



gravity). The behavior constraints considered were stresses,

buckling, displacement, and frequency. The spacer structure,

for parallel computation, was divided into three substructures;
four subproblems were used for sequential computation. The

optimum results obtained are summarized in table II. Sub-

structure optimization for sequential computation converged

after the second execution of the outer loop; that is, eight sub-

problems were solved. Parallel computation with one or three

processors required the convergence of the solution of 16 sub-

problems in 4 outer loops. The same optimum design weight
of about 307.9 lb was obtained for all three optimization strat-

egies (sequential, parallel, and regular).

3: Design of Cylindrical Shell With Rigid Diaphragms

The minimum-weight design of a cylindrical shell with

two rigid diaphragms and subjected to two line loads (fig. 9)
was considered as the next example. The optimum design was

obtained for stress and displacement constraints. Only one-

eighth of the shell, with appropriate boundary conditions on the

planes of symmetry, was discretized into 100 shell elements

and divided into 4 segments for the purpose of substructure

optimization. By using weighted link factors to provide a

heavier design under the loads (fig. 9), all nodes within a seg-

ment were grouped to obtain one independent design variable.

Three substructures were considered for parallel computation

and four for sequential computation.
The results for this problem are given in table IN. For this

example, the optimum design obtained using subslructuring

differed from that obtained without subsa-ucturing. The differ-

ence in optimum weight was marginal; that is, subsa'ucturing

provided a lighter design by 0.78 percent. However, substantial
variation was noted for the third and fourth design variables. The

difference between substructure optimization and regular

optimization was 69 percent for the third variable and 46 percent
for the fourth variable. The number of active constraints

(table Ill(b)) also differed. Stress and displacement consvaints

became active for regular optimization, but only slress conslraints
were active when the substructure strategy was used. To verify

the existence of two different optima about the same objective

function, we resolved the regular optimization process (in which

the entire structure was considered as a single unit) by using an

I" L --I

i i i i ½ i _ i i i _ _ /--Rigiddiaphrogm

.... A " z "--'-" 0z

/- Rigid diaphragm
(u=v= az=0)

(a)

X

A

--_y
(b)

X

y

(c)

Data

Radius, R, in........................................ 100
Length - radius ratio, L/R ..................... 2

Radius - thickness ratio, R/t o ............. 100

Young's modulus, E, psi .............. 30x106

Weight density, p, Ib/in.3 ................... 0.1
Poisson's ratio, =,................................. 0.3

Stress limit _ro, psi ....................... 20xl 03

Displacement limit, 8o, in ................. 0.35

Figure 9._Cylindrical shell problem. Behavior constraints: stress and displacement. (a) Shell
geometry, P = Ib/in. (b) Design segments. (c) Thickness variation along shell circumference.
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initial design equal to the optimum design obtained by the

substructure technique. This case converged to the design that was

obtained by the substructure technique. In other words, there are

two optima; the substructure technique converged to the

analytically superior optimum.

4: Design of a 60-Bar Trussed Ring

The minimum-weight design of a 60-bar trussed ring

(fig. 10) for stress displacement and frequency constraints
undcr three load conditions (ref. 22) was considered as this

example. The problem was solved using two substructures for

parallel and three for sequential computations. The results

obtained are given in table IV. Different optimization strategies

converged to about the same optimum weight (within a one-

half-percent variation). A discrepancy was noted in the number
of active behavior constraints, eight, six, and eight for regular,

sequential, and parallel optimization, respectively.

5: Design of a Geodesic Dome

A geodesic dome (fig. 11) consisting of 132 bars and 61
nodes was the final example. The minimum-weight design

was obtained tor stress, buckling, and displacement con-
straints. The 132 bars were divided into 7 segments, and all

bars within a segment were linked to a single independent

variable. For parallel computation from neighboring seg-
ments, 6 substructures were formed: substructure (1) includes

segments 1 and 2, substructure (2) includes segments 2 and 3,

etc. For the sequential computation, a seventh substructure
was used and contained the innermost and outermost seg-

ments. The optimum results obtained are summarized in
table V. For this example, all three strategies provided the

same design with an optimum weight of 92.13 lb and seven
active constraints.

Discussion

Three issues in substructure optimization (i.e., computa-

tion, convergence, and analytically superior optimum) are

discussed on the basis of experience gained from solving the

numerical examples.

Intensive Computation

Table VI summarizes the time required for the central pro-

cessing unit (CPU) on a Cray YMP computer to solve several

problems with sequential substructure optimization and with

regular optimization. The average CPU time increased by a
factor of 5.57 when substructuring was used. The number of

reanalyses for the two cases differed by a factor of 6.19. The

amount of computation can increase when substructuring is

adopted because of the iterative nature of the process. The

computations required for optimizing a substructure can be

reduced if only the substructure in question is analyzed by

using standard condensation. Substructure reanalysis has not

yet been incorporated in CometBoards.
Computation time can be reduced when subproblems are

distributed among the various processors of a multiprocessor

computer. Attributes and parameters for parallel substructure

optimization using multiple processors in a Cray YMP com-

puter are summarized in table VII.
(1) Relative nonparallel time is the time required for

executing the serial portions of the code (primarily for read and

write operations). This time tumed out to be a very small por-

tion (on average, less than 0. I percent) of the total CPU time,
as shown in the first row of table VII.

(2) Overhead time is the time required to assign subprob-

lems to processors and to assign common blocks. The overhead
time was less than 2 percent of the total CPU time, as shown in
the second row of table VII.

(3) Processor idle time due to load imbalance was usually

small and ranged from 1.6 to 27.8 percent for the various prob-
lems. Load imbalance in substructure optimization occurred

because some of the simpler subproblems were solved faster

than other complicated subproblems. For the geodesic dome

problem, the computational load was well balanced between

the various processors. For the cargo bay support system
design example, the load imbalance was 27.8 percent because

the problem complexity differed between subproblems.
(4) The relative speedup time for computation using multi-

processors is summarized in the last two rows of table VII. Ide-
ally, the numbers in the first row should match the number of

processors. However, when three processors were used, the

actual speedup was between 2.13 and 2.85; for two processors,
between 1.67 and 1.94; and for six processors, 5.25. In brief, the

speedup time when several processors were used was good for

all examples. The last row in table VII provides the multiproces-

sor speedup time scaled against that for the sequential algorithm.
Ideally, these times should equal the times given in the preceding
row. A difference between the two rows indicates that a penalty

has been introduced for parallel computation.

Convergence of Substructure Optimization Strategy

Convergence of the substructure optimization strategy can

be separated into three categories: coupling, constraints, and

computation.

Coupling between substructures.--Adequate overlap, or
coupling, between substructures is essential for convergence in

the substructure optimization strategy. This issue can be
observed even for the simple three-bar truss shown in fig-

ure 12. The design variables are the three bar areas, and the

minimum weight of the truss under a single load condition for

stress, displacement, and frequency is the objective. Two dif-

ferent substructure strategies were used to solve the problem:

uncoupled and coupled. The uncoupled substructure strategy

11
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Location of lumped mass

Data

Initial area, Ao, in .................................................. 1.0

Lumped mass, Ib

n_ ............................................................ 200

n_) ............................................................. 100

Young's modulus, E, psi .................................... 107

Weight density, p, Ib/in. 3 ................................... 0.1

Stress limit, _o' psi ............................................. 104

Displacement limit in Xo and y-directions, 80, in.

Node 4 ........................................................ 1.75

Node 13 ...................................................... 2.25

Node 19 ...................................................... 2.75

Frequency limit, F o, Hz .......................................... 13

Figure 10._Sixty-bar trussed ring problem.
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Data

Solid circular cross section, in.

Diameter, DO ....................................... 1.0
Radius R, in.......................................... 255
Height, in................................................ 30

Young's modulus, E, psi ................ 75x106

Weight density, p, Ib/in.3..................... 0.10

Stress limit, _o' psi ...................... 12.5xl 03

Displacement limit, 8o, in.................... 0.04

Figure 11.---Geodesic dome problem.

considers each member as a subproblem for optimization (but

considers analyzing the total structure to generate the behavior

constraints). This strategy gives rise to three uncoupled sub-
problems with no overlap between the substructures. The cou-

pled substructures strategy divides the truss into three
substructures: bars 1 and 2, bars 2 and 3, and bars 3 and 1,

respectively, as shown in figure 12. Note the coupling between
substructures; for example bar 2 is common to substructures 1

and 2. When there was no coupling between substructures, a

pseudorandom damping technique was adopted to perturb and

update design variables after the optimization of subproblems

had been completed. Convergence occurred for the coupled

substructure without the use of damping of any kind as shown

in table VII/. For the uncoupled substructures, convergence

occurred for stress constraints only. The process experienced

convergence difficulty when displacement and frequency were
added to the constraint set. With difficulty, convergence was

achieved when displacements were the only constraints and the

pseudorandom damping parameter was increased to 70 percent

(table VIII, column 8). For problems with stress, displacement,

and frequency constraints, convergence did not occur

(table VIII). We recommend that coupled substructures be

used in substructure optimization.
Constraint grouping for a substructure.--Stresses, Euler

buckling, and crippling can be considered local constraints.

Displacement and frequency are global constraints because

their evaluation requires that the entire structure be treated as a
single unit. When substructure strategy is used, the behavior

constraint set of a subproblem should include all local (stress,

buckling, and crippling) constraints for the substructure in

question. In addition to local constraints, all subproblems ide-

ally should include all global constraints such as displacement

and frequency limitations. Convergence can be assured when

this constraint grouping strategy is followed. However, con-
vergence difficulty can be encountered when the grouping

strategy is not followed.

Computation in sequential versus parallel strategies.--

Substructure optimization converges more rapidly for sequen-
tial computation than for parallel computation because for the

sequential mode, a superior initial design is available to initiate

13



50x103 Ib

100

100

100xl 03 Ib

Q Lumped mass = 0.68 Ib sec2/in.

(a)

• Material data

E = 30xl 03 psi

p = 2.591xl 0-4 Ib sec ?-/in.4

• Constraints

-<¢o ; _o 20xl 03 psi

u_ = v_ < 8o ; 80 = 0.0675 in.

f _<to;to=1oo.z

(b)

Figure 12.mThree-bar truss problem. (a) Three-bar truss data. All dimensions are in inches. (b) Substructures (1) to (3).

(1) (2) (3)

sequential mode, a superior initial design is available to initiate

the next subproblem (fig. 5(a)). For the problems solved, the

computational penalty for a parallel algorithm varied between

I. 16 for the ring and 1.737 for the spacer structure (table IX).

In parallel computation the outer loop may have to be executed

more times than required for sequential computation. For

example, for the cylindrical shell problem, the outer loop was

executed five times for parallel computation but only three

times for sequential computation (table IX).

Superior Analytical Optimum

For four problems (examples l, 2, 4, and 5), the optimum

designs and weights obtained by the substructure strategy and
the regular optimization technique agreed well. The cylindrical

shell (example 3) was an exception. The optimum weight dif-

fered by about 0.78 percent in favor of substructure optimization.

The change in the design variables between the two strategies
differed by more than 50 percent. The regular optimization tech-

nique provided a more practical design although it is 0.78 per-

cent heavier. Substructure optimization, however, provided an

analytically superior design with fewer failure modes.

Conclusions

Substructure optimization strategies in sequential as well as

in parallel computational modes for a multiprocessor computer

were incorporated in the design code CometBoards (Compara-

tive Evaluation Test Bed of Optimization and Analysis Routines

14



forDesignofStructures).Substructureoptimizationcanbemore
computationallyintensivethanregularsingle-stepoptimization.
Substructureoptimizationinaparallelcomputationalmodeona
multiprocessorcomputercanmakeeffectiveuseofallassigned
processors(uptoan80-to90-percentcapacity).Couplingbe-
tweensubstructuresandtheseparationofconstraintsintolocal
andglobalsetsareessentialfortheconvergenceofthesubstruc-
turestrategy.Substructureoptimizationconverges;however,de-
pendingonthenatureofaproblem,theprocesscanreachan
analyticallysuperioroptimumthatisdifferentfromwhatcanbe
obtainedbytheregularoptimizationprocess.

Acknowledgment

This work was performed while the first author, Atef S.
Gendy, held a National Research Council-NASA Lewis

Research Center Research Associateship.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, April 5, 1995

15



ANALYZE

CometBoards

FD

FUD

IFM

IMSL

LE_HOST

MFD

NAG(sqp)

Appendix--Nomenclature

stiffness code developed at Wright-Patterson
Air Force Base

NOUT_PRL number of times that outer loop is executed

in parallel computation

Comparative Evaluation Test Bed of Opti-

mization and Analysis Routines for Design
of Structures

method of feasible directions

fully utilized design

integrated force method

International Mathematical and Statistical

Library

NOUT_SQL

NSUBSTR

NUMSPS

OC

RG

SLP

number of times that outer loop is executed

in sequential computation

number of substructures

number of subproblems solved

optimality criteria

reduced-gradient method

sequence of linear programming

linear elastic structural analysis code SQP sequence of quadratic programming

modified method of feasible directions

nonlinear programing algorithm in NAG
library

SUMT sequence of unconstrained minimization

technique
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TABLE I.---OPTIMIZATION RESULTS FOR SPACE

SHUTTLE CARGO BAY SUPPORT SYSTEM

(a) Optimum weight, ib

Outer loop

number

Initial

1

2

3

Substructuring No substructuring

Sequential Parallel (single unit)

54.35 54.35 54.35

34.74 34.04 34.72

34.84 34.74 .......

....... 34.71 .......

(b) Optimum design

Parameter

Design
variables

1

2

3

4

Initial variable,

in.

Thickness

Substructuring

Sequential Parallel

No substructudng

(single unit)

0.2

.2

.2

.2

0.1281 0.1277 0.1277

.1299 .1298 .1299

.1765 .1765 .1763

.0319 .0264 .0263

Number

of active ..... 2
constraints

(c) Relative solution time estimate

Parallel computation

Number of processors

1 3

1.25 0.58

Sequential

computation

1.0

TABLE 11.--4)PTIMIZATION RESULTS FOR SHORT SPACER

STRUCTURE FOR SPACE STATION

(a) Optimum weight. Ib

Outer loop

number

Initial

!

2

3

4

Substruoufing

Sequential Parallel

561.18 561.18

308.22 291.72

307.87 306.38

........ 308.32

........ 307.88

No substructuring

(single unit)

561.18

307.95

(b) Optimum design

Parameter

Design
variables

l

2

3

4

Initial variable,

in.

Substructuring

Sequential Parallel

2.0313 2.0305

1.3398 1.3398

1.5797 1.5798

1.2004 1.2015

Outer

diameter

3.0

3.0

3.0

3.0

Number

of active ..... 3
constraints

No substructuring

(single unit)

2.0324

1.3398

1.5795

1.2015

(c) Relative solution time estimate

Sequential

computation

1.0

Parallel computation

Number of processors

1 3

1.33 0.493
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TABLE III._PTIMIZATION RESULTS FOR

CYLINDRICAL SHELL

(a) Optimum weight, lb

Outer loop
number

Initial

1

2

3

4

5

Substructuring

Sequential Parallel

1176.80 1176.80

1166.11 1009.27

1154,77 1184.90

1154.10 1139.19

......... 1157.14

......... 1153.08

No substrucluring

(single unit)

1176.80

1161.95

(b) Optimum design

Parameter Initial variable,

in.

Design

variables

1

2

3

4

Thickness

1.0

1.0

1.0

1,0

Substructuring

Sequential Parallel

0.7109 0.7108

.7518 .7512

.6879 .6877

2.4741 2.4697

Number

of active ..... 4
constraints

No substructuring

(single unit)

0.7562

.8344

1.1656

1.3222

(c) Relative solution time estimate

Sequential

computation

1.0

Parallel computation

Number of processors

1 3

1.33 0.493

TABLE IV._PTIMIZATION RESULTS FOR

60-BAR TRUSSED RING

(a) Optimum weight, lb

Outer loop Substructuring No substructuring

number Sequential Parallel (single unit)

Initial 625.19 625,19 625.44

1 429.24 532.26 428.44

2 428.44 431.04 ........

3 ......... 430.57 ........

(b) Optimum design

Parameter Initial variable, Substructuring No substructuring

in.2 Sequential Parallel (single unit)

Design

variables

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Member

area

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

1.1481 1.1885 1.1437

2.1133 2.1120 2.1218

5009 .5009 .5009

2.3328 2.3202 2.3265

2.1481 2.1358 2.1403

.5691 .5692 .5691

2.6112 2.5939 2.6044

2.3243 2.3071 2.3170

.7585 .7564 .7561

4.2924 4.2868 4.3017

3.9324 3.9267 3.9356

.5026 .5025 .5025

2.3963 2.3968 2.4044

1.2176 1.2186 1.2173

1.2605 1.3245 1.2554

.8991 ,9374 .8971

1.2606 1.2859 1.2570

1.3966 1.4597 1.4058

1.1059 1.1051 1.1059

1.1785 1.1786 1.1787

1.8241 1.8695 1.8463

1.9320 1.9222 1.9256

2.2619 2.2270 2.2524

1.7707 1.8135 1.7725

1.2792 1.2807 1.2793

Number

of active ..... 8
constraints

6 8

(c) Relative solution time estimate

Sequential

computation

1.0

Parallel computation

Number of processors

4 2

1.15 0.691
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TABLE V._PTIMIZATION RESULTS FOR

GEODESIC DOME

(a) Optimum weight, Ib

Outer loop Substructuring No substructuring

number Sequential Parallel (single unit)

Initial 319.30 319.30 319.30

l 91.72 92.12 92.13

2 92.12 92.12 ........

3 ...... 92.13 ........

(b) Optimum design

Parameter Initial variable, Substracturing No substructufing

in. Sequential Parallel (single unit)

Design

variables

1

2

3

4

5

6

7

Diameter

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.5717 0.5721 0.5719

.5314 .5316 .5315

.5409 .5409 .5410

.5133 ,5133 .5133

.5460 .5460 .5460

.4897 .4897 .4897

.5500 .5500 ,5500

Number

of active ..... 7
constraints

7 7

(c) Relative solution time estimate

Sequential Parallel computation

computation

1.0 1.21

Number of processors

2 3 [ 6

0.62 0.42 [ 0.23

TABLE VI.--SUMMARY OF COMPUTATIONAL RESULT FOR SEQUENTIAL SUBSTRUCTURE
OPTIMIZATION VERSUS SINGLE-STEP STRUCTURE OPTIMIZATION

Problem

Cargo bay support system

Spacer structure

Cylindrical shell

Trussed ring

Geodesic dome

Regular optimization

(no substructuring)

Substructure optimization

(sequential algorithm)

Normalized number

of reanalyses

Normalized Normal-

number ized

of CPU time

reanalyses

I 1.0

I 1.0

I 1.0

I 1.0

I 1.0

3.919

6.568

8.777

4.440

7.268

Normalized CPU

time

3.571

6.667

8.333

5.000

6.667
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TABLE VII.--SUMMARY OF RESULTS FOR PARALLEL COMPUTATION

Problem Cargo bay Spacer Cylindrical Trussed Geodesic dome

support structure shell ring

system

Number of 3

processors

Relative non- 0.05

parallel time,

percent

Overhead time, 0.8

percent

Load imbalance, 27.8

percent

Speedup: 2.13

multiprocessor

versus one

processor

Speedup: 1.73

multiprocessors

versus

sequential

3 3 2 2 3 6

0.06 0.07 0.03 0.10 0.10 0.10

<0.1 1.1 1.2 0.5 0.8 1.7

18.2 13.2 16.6 1.6 2.2 2.9

2.45 2.70 1.67 1.94 2.85 5.25

1.41 2.03 1.44 1.61 2.36 4.35

TABLE VIII._PTIMUM DESIGN OF THREE-BAR TRUSS

Constraints Single Pseudorandom perturbations for uncoupled substructures, percent

structure
0 20 30 40 50 70

Stress 75.21 75.20 75.20 75.21 75.19 75.23 75.27

Displacement 74.25 1491.88 1235,22 916.43 616.18 573.55 74.25

Frequency 37.64 53.11 91.39 59.97 57.44 38.07 38.06

Stress, displace- 81.12 429.67 1494.31 1495.20 1493.32 1492.68 566.16

ment, frequency

Coupled

substructure

75.21

74.26

37.62

81.12

TABLE IX.--SUMMARY OF RESULTS FOR PARALLEL COMPUTATION VERSUS

SEQUENTIAL COMPUTATION

Problem

Carbo bay sup-

port system

Spacer structure

Cylindrical shell

Trussed ring
Geodesic dome

Sequential

Number

of outer

Number Normalized

of outer CPU time

loops

2 1.0

2 h0

3 1.0

2 1.0

2 1.0

loops

Parallel

Normalized

CPU time

1.231

1.737

1.329

1.160

1.207
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